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Market liquidity and its effect on
option valuation and hedging

By V. E. Putyatin† and J. N. Dewynne‡
Department of Mathematics, University of Southampton,

Southampton SO17 1BJ, UK

The model presented in this paper attempts to quantify the concept of liquidity
and establishes a relation between various measures of market performance. Infor-
mational inefficiency is argued to be the main reason for the unavailability of an
asset at its equilibrium price. The asset, however, can always be purchased at a
higher price or sold at a lower price, depending on the market expectations, unless
trading has ceased. The mathematical model describing the asset-price behaviour
together with arbitrage considerations enables us to estimate the component of
the bid–ask spread resulting from imperfect information. The impact of the mar-
ket liquidity on hedging an option with another option as well as the underlying
asset itself is also examined. In this last case uncertainty cannot be completely
eliminated from the hedged portfolio, although a unique risk-minimizing strategy
is found.

Keywords: option pricing; bid–ask spread; transaction costs;
market liquidity; asymptotic methods

1. Introduction

Usually liquidity is defined as the ability to transact immediately and with negligibly
small impact on the price of a security regardless of the size of the transaction. For
a market to be liquid, trading should be both informationally and transactionally
efficient, i.e. prices should fully reflect all available information and transactions
should be performed at prices that differ insignificantly from equilibrium prices.
Consequently, a bid–ask spread will be minimal in this case. Absence of liquidity
makes itself manifest significantly during market crashes; for instance, Wang et al .
(1990) finds that the illiquidity of the S&P 500 index, as measured by the bid–ask
spread, increased up to eight times during the market crash of 1987. Although the
liquidity of a market depends strongly on its structure, market makers are found to
be the major providers of liquidity in many futures markets, setting up the highest
bid and the lowest offer, and it is reasonable to assume that this is also the case for
other markets as well.

Informational and transactional efficiencies are not independent; the former drives
the latter, characterized by the realized bid–ask spread, which contains information
about liquidity rather than being the measure of liquidity itself, as asserted in Wang
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2094 V. E. Putyatin and J. N. Dewynne

et al . (1990). It is widely held that a bid–ask spread can be split into two parts.
The first part, due to inventory carrying costs, is of little interest in this work. It is
analysed in Amihud & Mendelson (1980) and Ho & Stoll (1981). Stochastic costs of
carry are considered in a number of recent papers, for example, Gibson & Schwartz
(1990), Brennan (1991) and Schwartz (1997).

The second part of the spread, that resulting from outstanding information†, is
examined by Copeland & Galai (1983) and Glosten & Milgrom (1985). In this work
we consider this second component but approach it in a continuous-time setting
under the assumption that the return on a stock over a short period of time is
normally distributed. Also, a concept of memory is introduced into the stock-price
process. This makes it possible to link the concepts of informational inefficiency,
unavailability of the underlying and market trends together and model their impact
on the price of a security. This method has similarities with the works on stochastic
convenience yield mentioned above. The assumption that the market price does not
reflect all available information implies that a Markovian process is not suitable to
model stock-price behaviour.

As mentioned earlier, one of the distinguishing features inherent in illiquid markets
is a frequent inability to buy or sell an asset at its equilibrium price. The reason for
this is that not all the information available about the asset is reflected fully in its
current price‡ and hence the asset behaviour becomes locally predictable, i.e. an
excess demand will result in the increase of the stock price over the next time-step
and likewise an excess supply will result in a decrease of the price. As a result, if
the return on a stock is exceeding or going to exceed (with certainty) the risk-free
interest rate, the stock is unlikely to be available for purchase at its intrinsic price, S
(its equilibrium price without outstanding information). Similarly, a falling market
leads to an inability to sell the stock for S. This results naturally in different sale
and purchase prices quoted by a market maker, which are adjusted in accordance
with the current market trend, as well as his expectations, in order to eliminate any
potential arbitrage opportunities.

The liquidity service of a market maker allows one to trade continuously in time
knowing his bid and ask prices before the transaction is commenced. Because of the
inertia associated with continuous trading there will always be an uncompensated
supply or demand which is not reflected completely in the current stock price and
this leads to market trends. However, trends cannot stay for a significant length of
time before prices move to eliminate them.

This article is organized as follows. In § 2 we introduce a model to describe a stock-
price behaviour which takes into account the stock liquidity. The option valuation
model is developed in § 3 and optimal bounds for the bid–ask spread are determined.
A scheme for finding the underlying parameters of the model is suggested in § 4.
Finally, in § 5 we consider hedging an option with the underlying asset. The hedging
scheme developed is important for tailor-made derivatives contracts when no other
claims on the asset are traded in the market. In the appendix we consider briefly
the related but simpler problem of hedging an option when the underlying asset
is unavailable for technical reasons (that is, there are randomly distributed times
during which the asset is not available for any price).

† That is, not all information available is represented by the current stock price.
‡ The case when unavailability of the asset is caused by technical reasons is considered in Appendix A.
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2. The stock-price model

Following the previous discussion, one plausible model for the process followed by
the intrinsic stock price, S, is

dS
S

= r dt+m dt, (2.1)

where the trend m is a normally distributed zero-mean process and r is the risk-free
rate.

The assumption that mt is a delta-correlated process, i.e. E(mtmτ ) = δ(t − τ),
leads to a geometrical Brownian motion; trends do not exist in this case, they are
arbitraged immediately. Assume now that mt is driven by the following system of
the stochastic differential equations:

dm = `dt, d` = −ω2m dt− γ`dt+ σω2 dβt, (2.2)

where βt is a unit-variance Brownian-motion process which reflects trades and arrival
of new information. The process followed by ` represents our expectations about the
stock’s future behaviour (since ` = d2(logS)/dt2 is analogous to an acceleration).
The coefficient γ > 0 represents damping and restricts information propagation
between trades. Clearly, very old stock history is irrelevant for the current stock
price; large γ corresponds to short memory and small γ corresponds to long mem-
ory. The restoring term ω ensures that trends will not persist over large time-scales
(greater than O(1/ω)), i.e. the market moves back to equilibrium; large ω leads to
a quick restoring action. The parameter σ plays a role analogous to the volatility
in a usual geometric Brownian motion, see (5.4). The homogeneous system (2.2) is
asymptotically stable if γ > 0, since the eigenvalues of the homogeneous problem
have negative real parts. Although the Brownian-motion process βt does not enter
equation (2.1) directly, the stock price S responds immediately to the arrival of new
information. This is because the system (2.1), (2.2) can be written as

dx = Axdt+B dβt,

where the pair (A,B) is absolutely controllable (as shown below) and

A =

0 1 0
0 0 1
0 −ω2 −γ

 B =

 0
0
σω2

 , x =

log(S)− rt
m
`

 .

The rank of the Kalman matrices [B,AB,A2B] is three, and this means that Q(t) =
cov(xt) is a non-singular matrix for all t > 0. Hence, x(t) has the density function

p(x, t) =
exp(−x′Q(t)−1x)
(2π det(Q(t)))3/2

and therefore, at any future time there is a positive probability that x will reach any
given neighbourhood of positive measure in R3 (see Davis (1977) for details).

For simplicity, we consider now the case where γ → ∞, ω → ∞ and ω2/γ →
ρ <∞. We return to the full model only in the conclusion. This yields the following
model for a stock-price behaviour:

dS = (r +m)S dt, (2.3)
dm = −ρm dt+ σρ dβt. (2.4)
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In this situation the parameter ρ represents both restoring and damping terms. To
understand the financial implications, the system (2.3), (2.4) is represented as

1
ρ
ÿ = −(ẏ − r) + σwt,

where y = log(S) and wt = dβt/dt is a white-noise process, the weak derivative of the
Brownian motion. If ẏ − r > 0 at some stage then it will remain so for a sufficiently
small time-interval because of the continuity of ẏ, which follows from (2.4). As a
result of this, a damping force is applied to the growth rate of the share. Financially it
means that the situation when the rate of return on the share exceeds its equilibrium
rate cannot exist for longer than O(1/ρ) before prices move to eliminate it. A similar
case occurs when ẏ−r < 0. The term m = ẏ−r can be thought of as a market trend
and it follows an Orstein–Uhlenbeck process. The limit ρ→∞ gives the geometrical
Brownian motion process,

dS = (r + 1
2σ

2)S dt+ σS dβt.

This fact will also be verified in § 5.
To investigate the properties of the process followed by mt consider the solution

of (2.4),

mt = m0e−ρt + σρ

∫ t

0
e−ρ(t−s)ws ds.

Here, in order to avoid having to consider the entire history of trading, m0 is set to
be a normally distributed random variable (independent of the white-noise process,
wt), and with zero mean and variance 1

2σ
2ρ (as with this particular choice of the

initial condition the transition process is absent). Hence the expected value and the
correlation function of mt are

E(mt) = 0, k(t, τ) = E(mtmτ ) = 1
2σ

2ρe−ρ|τ−t|.

We employ these formulae in § 4 to estimate the underlying parameters of this model.
The process followed by the stock price, S, is not Markovian since it remembers

the past through mt, whereas the process followed by the state vector Zt = (St,mt)′
is Markovian. Thus the price of a derivative security should depend on Zt rather
than St alone. In other words, the price of a derivative depends to some extent on
the history of the stock-price behaviour through the market trend.

3. Option pricing

In this section we consider effects of (2.3), (2.4) on option pricing. The stock price,
S, is not the price of a traded security in the usual sense. We assume, however, that
the derivatives market (particularly the futures market) is more liquid, and there are
securities written on this stock which are tradeable in the Black–Scholes sense. Let
V (t, S,m) be the price of such a security, a continuously differentiable function in t
and having continuous second partial derivatives with respect to S,m. Then, from
Itô’s lemma, the stochastic differential dV is

dV =
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂m
dm+ 1

2σ
2ρ2 ∂

2V

∂m2 dt.
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All tradeable securities in the market should have the same market price of risk,
λ = λ(t, S,m). Hence the option pricing equation is

∂V

∂t
+ (r +m)S

∂V

∂S
+ 1

2σ
2ρ2 ∂V

2

∂m2 − (σρλ+ ρm)
∂V

∂m
− rV = 0. (3.1)

Further, for simplicity of calculations λ is assumed to be a constant, which will be
found later in this section.

The substitutions S = Eex, t = T − τ , V = Eg(x, τ), where E is the exercise price
of the option and T is its expiry date, give the equation

∂g

∂τ
+ (r +m)

∂g

∂x
+ 1

2σ
2ρ2 ∂

2g

∂m2 − (σρλ+ ρm)
∂g

∂m
− rg = 0. (3.2)

For the initial condition we take g(x,m, 0) = δ(x). The general problem can be solved
by convolution of Green’s function g with the actual pay-off.

On applying the Fourier transform

u(ξ, η, τ) =
∫ ∞
−∞

∫ ∞
−∞

g(x,m, τ)e−i(ξx+ηm) dxdm,

to equation (3.2) one obtains the first-order hyperbolic initial-value problem

∂u

∂τ
+ (ξ − ρη)

∂u

∂η
= (iξr − iσρλη − 1

2σ
2ρ2η2 + ρ− r)u, (3.3)

u(ξ, η, 0) = 2πδ(η).

The characteristics of this equation are given by the following system:

dξ
dτ

= 0,
dη
dτ

= ξ − ρη,
du
dτ

= u(iξ(τ)r − iσρλη(τ)− 1
2σ

2ρ2η2(τ) + ρ− r), u(0) = 2πδ(η(0)).

Inverting the Fourier transform shows that Green’s function is

g(x,m, τ) =
e−rτ√

2πσ2c(τ)
exp
(
−(rτ − σλ(τ − p(τ)) + x+mp(τ))2

2σ2c(τ)

)
, (3.4)

where

c(τ) = τ − 2
ρ

(1− e−ρτ ) +
1
2ρ

(1− e−2ρτ ), p(τ) =
1
ρ

(1− e−ρτ ). (3.5)

Schwartz (1997) asserts that a closed-form solution to an equation of the type (3.2)
was first obtained by Jamshidian & Fein (1990). The formula for pricing a European
call option is found as the convolution of the Green’s function (3.4) with the pay-off
max(ex − 1, 0) and, in financial variables, is

C(S,m, t) = Semp(T−t)+α(T−t)N(d̃1)− Ee−r (T−t)N(d̃2),
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where†

d̃1 =
log(S/E) +mp(T − t) + α(T − t) + r (T − t) + 1

2σ
2c(T − t)

σc1/2(T − t) ,

d̃2 =
log(S/E) +mp(T − t) + α(T − t) + r(T − t)− 1

2σ
2c(T − t)

σc1/2(T − t) ,

α(T − t) = λσ(p(T − t)− (T − t)) + 1
2σ

2c(T − t),
and N(x) is the cumulative probability distribution function for a standardized nor-
mal variable:

N(x) =
1√
2π

∫ x

−∞
e−y

2/2 dy.

It is easy to verify that the price of the forward contract with the delivery price
K is

f(t) = Semp(T−t)+α(T−t) −Ke−r(T−t).

The forward price F is defined as the delivery price which would make the contract
have zero value. Therefore,

F = Semp+α(T−t)+r(T−t). (3.6)

Not only is the intrinsic stock price, S, reflected by the forward price F but so is the
current market trend m. The study of Varson & Selby (1994) reveals the relationship
between the price of a stock and the price implied by a call option on this stock.
According to them the implied stock prices lead the observed stock prices by about
15 minutes on average (see their paper for details). This lead/lag relationship can be
seen from the formula for the forward price F , which takes into account the market
trend m, unlike the intrinsic price S. Usually derivatives markets are more liquid
than stock markets, which accounts for this sort of cross-market inefficiency.

As has been mentioned earlier, stock markets, where an underlying is not always
available either for sale or purchase because of excess supply or demand, have the
common feature of locally predictable behaviour. This does not give rise, however,
to arbitrage opportunities. An excess growth rate (exceeding the risk-free rate of
interest) naturally results in the increase of the purchase price, eliminating any prof-
itable opportunities. Analogously, a deficient growth rate leads to the decrease of
the current sale price. Now the estimates for these two prices will be found in order
to eliminate arbitrage opportunities, which are inconsistent with any market equi-
librium theory, both in the stock and derivatives markets. We find that the least
purchase, Sp, and the biggest sale price, Ss, which can be quoted by a market maker,
are given by

Sp(t) = sup
T>t

e−r(T−t)F (t), Ss(t) = inf
T>t

e−r(T−t)F (t).

Indeed, if we had Sp(t) < supT>t e−r(T−t)F (t) we would short a forward contract
and buy the stock; this would guarantee the risk-free profit. Similarly we cannot

† Note that c(T − t), p(T − t) and α(T − t) are functions of (T − t), whereas r(T − t) is simply a
product.
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Figure 1. Bid–ask spread as a function of the market trend. The solid line represents log(Sp/S)
and the dashed line represents log(Ss/S).

have Ss(t) > infT>t e−r(T−t)F (t). These definitions impose a strict restriction on
the possible values of the parameter, λ. From formula (3.6) it follows that λ > 1

2σ
implies that Sp is infinite and λ < 1

2σ yields Ss as zero. Clearly, this is not the case
in practice; therefore, we must have λ = 1

2σ. This choice for λ also gives the Black–
Scholes formula for a price of an option in the limit ρ → ∞, see Black & Scholes
(1973).

A general form of the purchase and sale prices is shown in figure 1, where the
solid line represents log(Sp/S) and the dashed line denotes log(Ss/S). Note that
log(Sp/S) is quadratic if 0 < m < 1

2σ
2 and linear if m > 1

2σ
2.

Note that availability of the stock for S(T ) at maturity of the futures contract
depends on the market trend at time T . In order to avoid having to consider forward
purchase and sale prices (which makes modelling very complicated) we allow for cash
settlement in extreme cases.

In figure 2 the dynamics of the change in the exchange rate between the Ukrainian
currency (UAK) and the American dollar (USD) during the period from 15 to 23
April 1996 is shown. The low and high columns correspond to the purchase and
sale prices of one dollar. The decline in the currency market has been caused by the
supply of the USD that exceeded demand by $79.5 m over the week on the Ukrainian
currency exchange, according to the information supplied by the consulting firm
‘Intermarket’.
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Figure 2. The purchase and sale prices of the US dollar in an illiquid (Ukranian) market.
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Figure 3. Simplified (logarithmic) sale and purchase prices.

One can see how the difference between the average bid and ask prices increases
as the market falls. In general this kind of behaviour is common for illiquid markets.

4. Parameter estimation

In general, finding σ and ρ from the realized bid–ask spread is a difficult problem.
However, a simplification is possible if the logarithm of the purchase price is approx-
imated by a piecewise linear function as shown in figure 3.
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From the definition of the purchase and sale prices it is easy to see that

mt

ρ
− σ2

4ρ
= sgn

(
mt

ρ
− σ2

4ρ

)
log
(
Sp

Ss

)
. (4.1)

In principle, one can observe the sign of the expression

m

ρ
− σ2

4ρ

following the dynamics of the market prices. Indeed, a change of sign corresponds
to a change from a falling market to a rising market, or vice versa, when passing
through the point of the tightest bid–ask spread, m = 1

4σ
2.

The process followed by mτ/ρ is ergodic since the correlation function

k̃(τ, σ, ρ) =
σ2

2ρ
e−ρ|τ | (4.2)

tends to zero as τ → ∞. For ergodic stationary processes, one realization of a long
duration, T , is equivalent, in the sense of the volume of information, to a number
of realizations of the same total duration. Therefore, the parameters of the process
may be found as time averages, i.e.

0 = E
(
mt

ρ

)
≈ 1
T

∫ T

0

mt

ρ
dt, (4.3)

k̃(τ) = E
(
mt

ρ

mt+τ

ρ

)
≈ 1
T − τ

∫ T−τ

0

mt

ρ

mt+τ

ρ
dt. (4.4)

On applying (4.3) we find that

−σ
2

4ρ
≈ 1
T

∫ T

0
sgn
(
mt

ρ
− σ2

4ρ

)
log
(
Sp(t)
Ss(t)

)
dt. (4.5)

Now consider the division of the time-interval [0, T ] into n equal segments each of
duration δt. The displacement, −σ2/(4ρ), in equation (4.1) is given by formula (4.5).
Therefore, applying expression (4.4) for τ = iδt, i = 0, . . . , n we obtain empirical
correlation, k̃i. In order to get estimates of the parameters the least-squares method
is employed and we minimize the function

n∑
i=0

(k̃i − k̃(iδt, σ, ρ))2 (4.6)

over σ2 > 0 and ρ > 0.
Note that the role of relation (4.5) has been restricted to finding driftless mea-

surements. In practice the bid–ask spread contains other components as well, and it
is relatively difficult to separate them. Therefore, it would be unreasonable to treat
(4.5) as a relation between σ and ρ. The minimization procedure (4.6) is based on
finding correlation function (4.2), which best fits unbiased market data, and seems
to be more appropriate in this case.
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5. Hedging an option with the underlying asset

Although in our case risk cannot be completely eliminated when hedging an option
only with the asset, we attempt to construct a strategy to reduce the risk efficiently.
This can be particularly useful for hedging a tailor-made derivative when no other
claims on the same underlying are available in the market.

As has been explained earlier it is hard to exploit market trends to obtain a risk-
less profit, since the bid–ask spread incorporates this effect already. Instead, risk-
minimizing hedging strategy will be of interest in this work. Stochastic transaction
costs incurred when hedging (the bid–ask spread) will be taken into account implic-
itly, since the problem becomes very complicated.

We consider the problem under the realistic assumption ρ/σ2 � 1, i.e. the market
is relatively liquid, and obtain an asymptotic expansion of the backward probability
density function, p = p(t, S,m, V ) for the stock price S, trend m and wealth V , in
powers of ρ−1/2. In order to achieve the correct balance in the expansion we introduce
m̃ = ρ−1/2m. Later it will become clear from the structure of the problem that this
is the only consistent choice of the scalings.

In order to non-dimensionalize the system, the stock price, S, and the wealth, V ,
are rescaled with a unit of the currency. We should scale the time to the expiry and
the market trend, m, with their typical value, σ2. However, for the sake of simplicity
of calculation we do not do this explicitly (as it does not change the answer in our
case).

Let y∗ = y∗(t, S, m̃, V ) denote the number of shares held at each moment of time.
For a self-financing trading strategy the wealth, V , is driven by the process

dV = r(V − Sy∗) dt+ y∗ dS = rV dt+ ρ1/2m̃Sy∗ dt.

It will be verified below by direct calculation that the leading-order wealth satisfies
the Black–Scholes equation if y∗ admits the following representation:

y∗(t, S, m̃) = ∆(t, S)−∆SS
m̃

ρ1/2 + · · · , (5.1)

where ∆(t, S) is the Black–Scholes delta of an option. This expansion is inferred from
the intuitive argument, according to which risk is better reduced if the stock price is
discounted by the current market trend, i.e. y∗ = ∆(t, S exp(−m/ρ)). According to
the Kolmogorov formula, the relation

p(t, S, m̃, V ) = E(f(S, m̃, V ) | S(T ) = S, m̃(T ) = m, V (T ) = V ) (5.2)

gives a solution to the Kolmogorov backward equation

∂p

∂t
= rV

∂p

∂V
+ ρ1/2m̃S∆

∂p

∂V
+ rS

∂p

∂S
+ ρ1/2m̃S

∂p

∂S
− ρm̃ ∂p

∂m̃
+ 1

2σ
2ρ
∂2p

∂m̃2 ,

with the final condition p(T, S, m̃, V ) = f(S, m̃, V ) for a sufficiently smooth func-
tion f .

Consider now the following expansion:

p = p0 +
1
ρ1/2 p1 +

1
ρ
p2 +

1
ρ3/2 p3 + · · · .
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The leading-order problem is

1
2σ

2 ∂
2p0

∂m̃2 − m̃
∂p0

∂m̃
= 0,

which implies that

p0 = p0
0 + p1

0

∫ m̃

0
eh

2/σ2
dh,

where p0
0 and p1

0 are functions of t, S, V but not m̃. The solvability condition for this
problem yields p1

0 = 0, in order to eliminate exponential growth at infinity.
At O(ρ−1/2) we find that

m̃
∂p1

∂m̃
− 1

2σ
2 ∂

2p1

∂m̃2 = m̃S
∂p0

∂S
+ m̃S∆

∂p0

∂V
.

By solving this equation and applying the solvability condition we find that

p1 = p0
1 + m̃S

(
∂p0

∂S
+∆

∂p0

∂V

)
,

where p0
1 is a function of t, S, V .

Finally we find that

− m̃2
{
S
∂p0

∂S
+∆S

∂p0

∂V
+ S2 ∂

2p0

∂S2 + 2∆S2 ∂2p0

∂V ∂S
+ (S∆)2 ∂

2p0

∂V 2

}
+
∂p0

∂t
− rV ∂p0

∂V
− rS ∂p0

∂S
= 1

2σ
2 ∂

2p2

∂m̃2 − m̃
∂p2

∂m̃
,

which yields

p2 =
2
σ2L(p0)

{∫ m̃

0
ex

2/σ2
dx
∫ m̃

0
e−y

2/2σ2
dy −

∫ m̃

0

∫ m̃

0
e−x

2/2σ2
eξ

2/2σ2
dξ dx

}
+ · · · ,

where

L(p0) =
∂p0

∂t
− (rV + 1

2σ
2∆S)

∂p0

∂V
(r + 1

2σ
2)S

∂p0

∂S

− 1
2σ

2
{
S2 ∂

2p0

∂S2 + 2∆S2 ∂2p0

∂V ∂S
+ (S∆)2 ∂

2p0

∂V 2

}
.

On applying the solvability condition, p0 is found to satisfy the equation

L(p0) = 0. (5.3)

Rather than applying formula (5.2) directly, one can notice that equation (5.3)
implies that

dV = rV dt+ 1
2σ

2∆S dt+ σ∆S dβ,

dS = (r + 1
2σ

2)S dt+ σS dβ.

}
(5.4)
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Now we apply Itô’s lemma to the left-hand side of equation (5.4) and choose ∆ =
∂V/∂S. This yields the Black–Scholes equation for the leading order wealth:

∂V

∂t
+ rS

∂V

∂S
+ 1

2σ
2S2 ∂

2V

∂S2 − rV = 0.

To see the importance of the order ρ−1/2 term in representation (5.1), one can
repeat the preceding analysis without that term, to find that (hedging in accordance
with the pure Black–Scholes strategy) the wealth satisfies the equation

∂V

∂t
+ rS

∂V

∂S
− rV = 0.

Clearly, this equation cannot provide a satisfactory solution to the problem of the
efficient risk management.

Representation (5.1) also suggests holding fewer shares than the Black–Scholes
delta when the market is going up and more when it is falling. This might seem
to be unreasonable at first sight but it is optimal in the sense of risk reduction in
our problem, not to mention that buying (selling) extra shares in a rising (falling)
market is expensive because of the large bid–ask spread.

6. Conclusions and discussions

In this paper we establish the relation between market trends, unavailability of the
asset at its equilibrium price and the bid–ask spread. Having assumed that trends
obey the Ornstein–Uhlenbeck process we find the tight bounds for the realized bid–
ask spread to eliminate risk-free opportunities. We also consider hedging an option
with another option as well as the underlying asset itself, in case no other contingent
claims on the same asset are traded in the market. In the last case we modify the
Black–Scholes strategy to obtain the best means for risk reduction.

Finally, we briefly outline the main results when a more sophisticated model for
a stock-price behaviour, system (2.1)–(2.2), is employed. In the underdamped case,
4ω2 − γ2 > 0, the option pricing equation

∂V

∂t
+ S(r +m)

∂V

∂S
+ `

∂V

∂m
+ 1

2σ
2ω2 ∂

2V

∂`2
− (σωλ+ γ`+ ω2m)

∂V

∂`
− rV = 0

admits the following Green’s function:

g(x,m, `, τ) =
e−rτ√

2πσ2q̃(τ)
exp
(
−(rτ − σλp̃(τ) + x+mã(τ) + `b̃(τ))2

2σ2q̃(τ)

)
,

where

p̃(τ) = τ − 1
β2 + ω2

1

(
e−βτ

ω2
1 − β2

ω1
sin(ω1τ) + 2β(1− e−βτ ) cos(ω1τ)

)
,

q̃(τ) =
∫ τ

0

(
1− e−βt

1
ω1

(β sin(ω1t) + ω1 cos(ω1t))
)2

dt,

ã(τ) =
1
ω2

(
2β − e−βτ

(
β2 − ω2

1

ω1
sin(ω1τ)− 2β cos(ω1τ)

))
,

b̃(τ) =
1
ω2

(
1− e−βτ

ω1
(β sin(ω1τ) + ω1 cos(ω1τ))

)
,
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β = 1
2γ, ω2

1 = ω2 − β2 > 0,

and x, g, τ have been introduced earlier.
By means similar to those detailed above, the forward price is found to be given

by

F = S exp(r(T − t)− λσp̃(T − t) + 1
2σ

2q̃(τ) +mã(T − t) + `b̃(T − t)),
and the purchase and sale prices are defined as the supremum and infimum of the
discounted forward price, respectively. This again imposes the condition λ = 1

2σ.
The overdamped and critically damped cases can be dealt with similarly, although
these cases are less likely to be of interest in practice.

When hedging with the underlying asset, the optimal risk-reducing strategy is to
hold

y∗ = ∆(t, S)−∆SS
`

ω2 + · · ·

shares for ω/σ2 � 1. This can be verified as in § 5.
Illiquid markets are also notorious for their crashes. The model presented here can

be adapted to explain this sort of behaviour if we introduce a feed-back effect by mak-
ing the damping coefficient γ a function of the trend m; for example, γ = (1− 3m2).
Financially this means that trends make investment or short selling more attractive
and hence promote information propagation between trades. The model predicts,
under these circumstances, catastrophic collapses and bull runs corresponding to
the relaxation oscillations of Van der Pol’s type. ‘A tremendous crash in the stock
market is a relaxation oscillation—one cycle. A relaxation oscillation is characterized
by long intervals of quiescence followed by a very sudden, sometimes catastrophic
change over a very short period of time’ (see Lindsey 1972, p. 239). For a time anal-
ysis of the S&P 500 index during the October 1987 market crash see Bouchaud &
Sornette (1996). They confirm that the index behaviour was similar to relaxation
oscillations.

The detailed investigation of possible feed-back effects of trading, as well as optimal
hedging under this assumption is a topic for further research.

Appendix A.

Market trends are not the only reason for the unavailability of the underlying. In
some markets an inability to trade can be caused purely by technical reasons. In such
cases, in general, the times during which the asset is available for purchase appear
irregularly and unpredictably. We shall assume that the intervals of time during which
the asset is available are separated by time intervals drawn from independent identical
distributions. If these intervals are also exponentially distributed, F (x) = 1−exp(κx),
where F (x) is the cumulative density function and κ > 0, then the moments of
the stock arrival obey Poisson’s law. For many practical purposes this is a sensible
assumption, as in most cases it allows us to obtain compact results that quantify the
effects of the random availability well enough.

Let the stock price, S, be driven by the following discrete stochastic equation:

δS = µSδt+ σSφ
√
δt,
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where µ > 0 and σ > 0 are the growth rate and volatility, respectively; δt is a small
and random time increment, distributed in accordance with the law F (x) and φ is a
normally distributed random variable with zero mean and unit variance, independent
of δt. The increments δt are also independent of each other as well as the current
stock price S.

It is easy to see that

E(δt) =
∫ ∞

0
xdF (x) =

1
κ
, E(δt2) =

∫ ∞
0

x2 dF (x) =
2
κ2 .

The parameter κ can be interpreted as the expected number of rehedges per unit
time. Hence, an infinite value of κ implies the ability to hedge continuously in time
and should bring us back to the classical Black–Scholes world.

As in the previous sections, to find the value of an option as well as the risk-
minimizing hedging strategy, a portfolio containing one option and ∆ number of
shares will be set up. The quantity ∆ is chosen at the first moment when the under-
lying becomes available to hedge an option with and remains fixed during the next
random time-step δt (during which the asset is unavailable).

Although the portfolio Π = V − ∆S, where V = V (S, t) is the current price of
an option, cannot possibly be made risk free in the present situation, its increment
δΠ is set equal to rΠδt, and the residual risk will be taken into account later. An
estimate of the risk will be based upon the average number of rehedges, which are
for Poisson’s law equal to κT , where T > 0 is the lifespan of an option.

By employing stochastic Taylor series the increment of the portfolio Π can be
expressed as

δΠ = δV −∆δS =
∂V

∂t
δt+ 1

2σ
2S2φ2 ∂

2V

∂S2 δt+
(
∂V

∂S
−∆

)
δS.

It can be easily verified that the risk of the hedged portfolio is given by

var(δΠ)(∆) = E(δΠ2)− E(δΠ)2

=
1
λ2

[
∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2 +
(
∂V

∂S
−∆

)
µS

]2

+
1
λ
σ2S2

(
∂V

∂S
−∆

)2

.

(A 1)

In order to minimize the risk exposure, the derivative of the hedged portfolio with
respect to ∆ is set equal to zero, i.e.

∂ var(δΠ)(∆)
∂∆

= 2
µS

κ2

(
∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2

)
+ 2
(
∆− ∂V

∂S

)(
µ2

κ2 +
σ2

κ

)
S2 = 0,

and hence

∆ =
∂V

∂S
+
(

1
S

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2

)/(
µ+ κ

σ2

µ

)
. (A 2)

It is easy to see that with this choice of∆, expression (A 1) attains its global minimum
since

∂2 var(δΠ)
∂∆2 =

2µ2S2

λ2 +
2∆σ2S2

λ
> 0

and when ∆→ ±∞ expression (A 1) tends to +∞.
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By substituting expression (A 2) into the pricing formula,

E(δΠ) = rE(Πδt),

the modified Black–Scholes equation,

∂V

∂t
+ r̄S

∂V

∂S
+ 1

2σ
2S2 ∂

2V

∂S2 r̄V = 0, (A 3)

is obtained, where r̄ is defined to be

r̄ = r
µ+ κσ2/µ

r + κσ2/µ
.

In our case the argument about the construction of a completely risk-free position is
impossible and, hence, the risk-neutral world is irrelevant. This is why the modified
interest rate r̄ will always be higher than the actual interest rate r (assuming that
µ > r). The limit κ → ∞ gives us back the Black–Scholes equation with the actual
interest rate r.

Taking into account (A 3), expression (A 2) for the optimal number of shares to
hold admits a simplification:

∆ =
∂V

∂S

κσ2/µ

r + κσ2/µ
+
V

S

r

r + κσ2/µ
.

The risk due to hedge imperfections can be estimated using the result obtained by
Bouchaud & Sornette (1994). According to them the residual risk (variance), J , is
given by

J =
σ2

8κ
+O

(
1
κ2

)
.

The residual risk can be priced in accordance with the investor’s attitude towards
uncertainty.
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